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Abstract—Blockchains, and specifically smart contracts, have
promised to create fair and transparent trading ecosystems.

Unfortunately, we show that this promise has not been met. We
document and quantify the widespread and rising deployment of
arbitrage bots in blockchain systems, specifically in decentralized
exchanges (or “DEXes”). Like high-frequency traders on Wall
Street, these bots exploit inefficiencies in DEXes, paying high
transaction fees and optimizing network latency to frontrun, i.e.,
anticipate and exploit, ordinary users’ DEX trades.

We study the breadth of DEX arbitrage bots in a subset of
transactions that yield quantifiable revenue to these bots. We also
study bots’ profit-making strategies, with a focus on blockchain-
specific elements. We observe bots engage in what we call priority
gas auctions (PGAs), competitively bidding up transaction fees in
order to obtain priority ordering, i.e., early block position and
execution, for their transactions. PGAs present an interesting
and complex new continuous-time, partial-information, game-
theoretic model that we formalize and study. We release an
interactive web portal, frontrun.me, to provide the community
with real-time data on PGAs.

We additionally show that high fees paid for priority transac-
tion ordering poses a systemic risk to consensus-layer security.
We explain that such fees are just one form of a general phe-
nomenon in DEXes and beyond—what we call miner extractable
value (MEV)—that poses concrete, measurable, consensus-layer
security risks. We show empirically that MEV poses a realistic
threat to Ethereum today.

Our work highlights the large, complex risks created by
transaction-ordering dependencies in smart contracts and the
ways in which traditional forms of financial-market exploitation
are adapting to and penetrating blockchain economies.

I. INTRODUCTION

Cryptocurrency exchanges today handle more than $10
billion in trade volume per day. The vast majority of this
volume occurs in centralized exchanges, which hold custody
of customer assets and settle trades. At best loosely regulated,
centralized exchanges have experienced scandals ranging from
high-profile thefts [38] to malfeasance such as price ma-
nipulation [22]. One popular alternative is what is called a

decentralized exchange (or “DEXes”).1 In a DEX, a smart
contract (a program executing on a blockchain) or other form
of peer-to-peer network executes exchange functionality.

At first glance, decentralized exchanges seem ideally de-
signed. They appear to provide effective price discovery and
fair trading, while doing away with the drawbacks of central-
ized exchanges. Trades are atomically executed by a smart
contract and visible on the Ethereum blockchain, providing
the appearance of transparency. Funds cannot be stolen by the
exchange operator, because their custody and exchange logic
is processed and guaranteed by the smart contract.

Despite their clear benefits, however, many DEXes come
with a serious and fundamental weakness: on-chain, smart-
contract-mediated trades are slow.2 Traders thus may attempt
to take orders that have already been taken or canceled but
appear active due to their views of messages sent on the net-
work. Worse still, adversaries can frontrun orders, observing
them and placing their own orders with higher fees to ensure
they are mined first.

Past work has acknowledged “transaction ordering depen-
dence” as an anti-pattern and vector for potential frontrun-
ning [30, 34]. Unfortunately, these analyses have previously
proved overly broad: virtually every smart contract can be said
to have some potential dependence on transaction order, the
majority of which is benign. As a result, effective practical
mitigations for these issues have failed to materialize, and
few deployed smart contracts feature ordering protections.
Other work has focused on systematizing knowledge around
smart contract frontrunning [18], including citing early public
versions of this work, but has not measured the size of this
economy or formalized its connection to protocol attacks.

1“Decentralized” exchange is something of a misnomer, as many such
systems have centralized components; most systems we call “decentralized”
exchanges could more accurately be classified as non-custodial: users trade
without surrendering control of their funds to a third party in the process.

2The average Ethereum block time is roughly 15s at the date of writing [19].
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In this work, we explain that DEX design flaws threaten
underlying blockchain security. We study a community of ar-
bitrage bots that has arisen to exploit DEX flaws. We show that
these bots exhibit many similar market-exploiting behaviors—
frontrunning, aggressive latency optimization, etc.—common
on Wall Street, as revealed in the popular Michael Lewis
exposé Flash Boys [33]. We explore the DEX design flaws
that spawned arbitrage bots, measure and model these bots’
behavior, and illuminate systemic smart-contract ecosystem
risks implied by our observations. Our main focuses are:

Pure revenue opportunities: A specific sub-category of
DEX arbitrage representative of broader activity, these are
blockchain transactions that issue multiple trades atomically
through a smart contract and profit unconditionally in every
traded asset. We choose these opportunities as a focus because
their simplicity makes them especially amenable to study and
measurement. We experimentally determine a lower bound
on this economy of over USD 6M to date and describe its
participating exchanges and bots.

Priority gas auctions (PGAs): Because pure revenue op-
portunities offer unconditional revenue, arbitrage bots often
compete against each other by bidding up transaction fees
(gas) in what we call PGAs. We formally model bot PGA
behavior and observe a cooperative equilibrium. We show that
empirical measurements of the evolution of bot PGA strategies
validate key features of our model.

Miner-extractable value (MEV): We introduce the notion of
MEV, value that is extractable by miners directly from smart
contracts as cryptocurrency profits. One particular source of
MEV is ordering optimization (OO) fees, which result from a
miner’s control of the ordering of transactions in a particular
epoch. PGAs and pure revenue opportunities provide one
source of OO fees. We show that MEV creates systemic
consensus-layer vulnerabilities.

Fee-based forking attacks: We show that OO fees can incen-
tivize miners to mount forking attacks. While fee-based attacks
were previously studied theoretically in Bitcoin [14], we
empirically demonstrate a current, realistic threat in Ethereum.

Time-bandit attacks: We show that high-MEV regimes
in general lead to a new attack in which miners rewrite
blockchain history to steal funds allocated by smart contracts
in the past. We call these time-bandit attacks. Our experiments
show that MEV from pure revenue profits and PGA bot fees
suffice to enable time-bandit attacks on today’s Ethereum.

Our results are surprising for two key reasons.

First, they identify a concrete difference between the
consensus-layer security model required for blockchain pro-
tocols securing simple payments and those securing smart
contracts. In a payment system such as Bitcoin, all independent
transactions in a block can be seen as executing atomically,
making ordering generally unprofitable to manipulate. Our
work shows that analyses of Bitcoin miner economics fail to
extend to smart contract systems like Ethereum, and may even

require modification once second-layer smart contract systems
that depend on Bitcoin miners go live [32].

Second, our analysis of PGA games underscores that pro-
tocol details (such as miner selection criteria, P2P network
composition, and more) can directly impact application-layer
security and the fairness properties that smart contracts offer
users. Smart contract security is often studied purely at the
application layer, abstracting away low-level details like miner
selection and P2P relayers’ behavior in order to make analysis
tractable (e.g. [9, 25, 50, 51]). Our work shows that serious
blind spots result. Low-level protocol behaviors pose funda-
mental challenges to developing robust smart contracts that
protect users against exploitation by profit-maximizing miners
and P2P relayers that may game contracts to subsidize attacks.

To illuminate the behaviors explored in this paper, we
release a web dashboard, frontrun.me, that presents PGA data
in real time. We open-source all associated code and hundreds
of gigabytes of raw data on the Ethereum PGA economy (with
processed data).3

We hope our efforts in general offer insight into the broad,
application- and consensus-layer risks created by ordering de-
pendencies in smart contracts and into the effects of traditional
financial-market exploitation on blockchain consensus.

II. BACKGROUND

We now provide background required to understand PGAs.

A. Smart Contracts

Smart contracts are small computer programs executed
without user intervention, often by a system that allows all
of its participants to verify these programs’ correct execution.
Smart contracts often use a public blockchain network as the
underlying infrastructure for their execution [45, 49].

Ethereum [49] is currently the largest smart contract system
that is Turing-complete, i.e., allows encoding of arbitrary
smart-contract functionality. Ethereum smart contracts have
been used or proposed for a range of complex transaction
types, including shareholder voting [36], stakeholder-owned
investment funds and vehicles [11, 16], fair exchange protocols
for goods [51], complex key management solutions [50], video
games [26], virtual casinos [39], and more.

The most popular smart contracts on Ethereum by daily
active users primarily concern virtual sub-currencies called
tokens. These tokens can represent any scarce item, e.g.
collectible resources in a video game [26] or shares in a
venture [21]. The latter fueled a 12 billion USD token-based
capital-investment craze called the “ICO boom”. DEXes are a
popular type of smart contract that allow users to trade such
tokens in a non-custodial manner [48].

3Our Github repository at https://github.com/pdaian/flashboys2 contains all
infrastructure, data processing, and visualization code and data, plus code for
our original arbitrage trade bot.
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B. Gas and Fees in Ethereum

An Ethereum transaction either sends money to a non-
executing account address or sends input data (and possibly
money) to a smart contract address, representing a program
stored in the network’s state. Transactions are gossiped to all of
the nodes in the underlying peer-to-peer network to signal their
availability for inclusion in a future mined block. Transactions
can be in one of three states: unconfirmed and not yet mined,
confirmed and considered to have been executed, or rejected
as invalid by the network of Ethereum peers.

Ethereum transactions consume gas, a pseudo-currency
reflecting the number of computational steps performed by
a miner (and other network nodes) executing a transaction.
Ethereum contracts may contain complex logic, loops, etc., so
their gas consumption can only be determined via execution.
Ethereum meters gas consumption via a fixed mapping from
contract op-codes to units of gas [49].

Every transaction submitted to the network for mining
specifies a gas price, the per-gas-unit rate the sender will pay
in Ether (ETH). The gas price times the units of gas consumed
determines the fee in ETH paid by the transaction sender to
the node that ultimately mines the transaction. (Bitcoin fees,
by contrast, depend simply on transaction byte lengths.)

Transactions must also specify a gas limit, the maximum
number of steps a network node should attempt before reject-
ing a transaction. The gas limit prevents infinite loops and
other DoS vectors, and allows immediate verification that a
sender has adequate available funds to pay the transaction
fee—up to gasPrice · gasLimit ETH.

Clients can also perform what is called a “gas replacement”
transaction, resubmitting a transaction with a higher transac-
tion fee (gasPrice · gasLimit) in the hope that miners will more
quickly incorporate the transaction into a block. The mecha-
nism for doing this is nonce-based. Each transaction issued on
the network carries a nonce, and valid canonical blockchains
must only include one transaction per (account, nonce) pair on
the network. When a user reissues an unconfirmed transaction
with the same (account, nonce) pair but a higher gas price, a
miner will prefer the reissued transaction—with its ostensibly
higher transaction fee—to the replaced one.

Note that a higher gas price only corresponds to a higher
fee if the reissued transaction uses the same amount of gas as
the replaced one, which may not hold true. Mining software
assumes this to be the case, in part because computing gas
consumption incurs the computational burden of executing a
contract. Arbitrageurs leverage this heuristic to pay reduced
transaction fees, as we detail in Section V-A.

C. Continuous-Limit Exchanges

Classic exchanges for trading stocks, commodities, and even
cryptocurrencies generally share an accepted and common
exchange design known as a continuous-limit orderbook. Such
an orderbook consists of a list of all open offers from buyers
and sellers in the system. Prospective buyers place a limit
buy order, which specifies a maximum price at which they
are willing to buy an asset; sellers correspondingly place

limit sell orders. A centralized counterparty, the exchange
operator, matches buyers and sellers, completing transactions
automatically when there is a sell order on the books with a
lower price than a buy order on the books. Orders are matched
and / or placed on the books continuously by the exchange
operator, which processes orders as quickly as possible in the
order they are received. As soon as orders match, they are
processed by the operator and trigger balance changes.

D. Decentralized Exchanges (DEXes)

DEXes manage continuous-limit order books using smart
contracts. Traders / users hold their assets on chain and the
smart contract plays the traditional role of exchange operator.

Order books are typically maintained off-chain. In some
DEX designs, a counterparty selects a fresh order in the
order book and presents it to the smart contract with a
signed counterorder. The smart contract executes the order and
counterorder, clearing the order from the order book. Traders
themselves thus perform order matching. This approach is used
by Etherdelta and some applications of the 0x protocol. In
an alternative approach, used by, e.g., IDex and Paradex, the
exchange itself performs matching off chain and submits order
/ counterorder pairs to the smart contract for processing.

A more radical DEX design, called an automated market
maker [3], bypasses order books altogether. The DEX consists
of a smart contract that itself holds a reserve of tokens and/or
Ether. Consider two assets A and B. The contract allows a
user to trade between A and B at any time using its reserves
as a counterparty, at a set rate. If a user buys A using B, the
price of A denominated in B offered by the smart contract for
the next trade is increased. If a user instead sells A for B, the
price decreases. In this way, single parties can trade without
counterparty discovery or matching. Consequently, constant
arbitrage between these and other exchanges is required to
keep the rate offered in lockstep with the market rate for a
commodity. Uniswap [46] and Bancor [1] are examples of
such exchanges.

E. Frontrunning and Profits through Arbitrage

Traditional exchanges experience a classic form of preda-
tory market behavior called frontrunning [4]. In regulated
markets, frontrunning is often illegal, and has resulted in
prosecutions [35] and tarnished the reputations of financial
institutions caught practicing it.

Frontrunning generally exploits information asymmetries
created by power structures within a financial structure, e.g.,
brokers having privileged access to user information. Because
there is no single party playing the role of a broker in
decentralized systems, information asymmetries can arise for
actors in advantageous positions in underlying infrastructure.

Frontrunning can also occur based on changes in public
market information (for example, reacting to breaking news
that impacts stock prices). In this form, it is not only legal,
but serves as the basis of a multi-billion-dollar high-frequency
trading economy. One potential source of profit is price
discrepancies across exchanges trading the same or correlated
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assets. Another is information asymmetries in the speed of
processing or interpreting news.

Automated market bots from high frequency trading firms
compete to profit from both at extremely high speed. They
regularly build physical networks costing billions of dollars
and approaching speed-of-light transmission across consider-
able distances. Many economists view this behavior as a zero-
sum game that profits exchanges in the long term, and argue
formally that the existence of such rents is a fundamental
limitation of market design that is a natural consequence of
arbitrage opportunities across exchanges [8]. This, however,
remains a controversial viewpoint.

We explore both cases where bots frontrun user orders and
cancellations directly, e.g., in the event of a typo or market
structure weakness, and cases where bots exploit market
inefficiencies to extract rent. We argue that both degrade the
economic security of the underlying consensus protocol.

III. FROM DECENTRALIZATION TO ARBITRAGE

In this section, we take a deep dive into a particular exam-
ple of frontrunning, arbitrage, and high-frequency automated
trading on a decentralized exchange. This concrete example
will provide context for the remainder of our discussions on
modeling this market and of its impact on the security of the
underlying smart contract systems.

One source of potential profit, price differences, seems
inherent in an environment such as smart-contract-based ex-
change. Today, blockchains operate with transactions pro-
cessed in discrete batches (blocks). Furthermore, transactions
are inherently dependent and therefore serial: order failures
depend on past order attempts, and in some exchanges prices
depend directly on order history. With multiple exchanges op-
erating on the same system, it is possible that price differences
will occur across exchanges while transactions in a block, and
therefore trades on exchanges, are executed sequentially.

A. Smart-Contract-Enabled Trade Atomicity

Smart contract arbitrage opportunities have an additional,
distinctive characteristic absent in traditional cross-exchange
arbitrage. Because of the atomic batch-based processing of
transactions, and because transactions can themselves be
initiated by smart contracts, is possible to build bots that
trade across exchanges through proxy contracts. These proxy
contracts can execute batches of orders sequentially within a
single transaction, reverting previous trades by throwing an
exception if any trade in the batch fails.

This means arbitrageurs have the opportunity to compose
single transactions that execute multiple trades across multiple
exchanges atomically, with an all-or-nothing failure model.
One example of such a transaction is buying an asset for price
x and selling it immediately for price x′ > x; if performed
atomically, these transactions together generate guaranteed
revenue in the base asset. For example, a smart contract proxy
could execute a trade buying a type-X token for 2 ETH, and
another selling it for 3 ETH. If both orders are on the books

on some decentralized exchange, a smart contract executing
both guarantees a revenue to the arbitrageur of 1 ETH.

In traditional cross-exchange arbitrage, trades are viewed
probabilistically, as there is a high likelihood that one of two
trades will succeed while the other fails. This makes smart-
contract-based arbitrage in many ways simpler to observe,
analyze, and study than traditional cross-exchange arbitrage,
as bot intent is often explicit in order requests.

In our measurements, we focus on a small subset of these
multi-trade arbitrage opportunities, which potentially involve
multiple decentralized exchanges. We restrict our focus to pure
revenue opportunities. In these opportunities, a single smart-
contract based transaction executes multiple trades across one
or more exchanges, and the transaction generates revenue for
the trader in every traded asset. A range of more complex and
nondeterministic bot behaviors exist, described in Appendix A,
but they are outside the scope of this work.

B. Pure Revenue by Example

ETH
0.142123

1.55496e+08 1.55e+08

0.93

Trade #1 (Tokenstore)
1.09409e+09 FREE/ETH

Free Coin (FREE)
0x2f141ce366a2462f02cea3d12cf93e4dca49e4fd

Trade #2 (Tokenstore)
1.66667e+08 FREE/ETH

Fig. 1. Example pure revenue opportunity observed in Ethereum transaction
0xc889bd13594f75e4dd824f04f0c2ad03896cb7ec6518df02455e9560367bb9c4,
exploiting an orderbook cross on the TokenStore DEX. Edges of the same
color are generated by a single trade. As a pure revenue opportunity, it
generates net profit in both FREE and ETH.

Figure 1 shows one example of a pure revenue transaction,
executed on November 15, 2018. In this transaction, two trades
are executed on a decentralized exchange, TokenStore, which
features a design conceptually similar to that of Etherdelta.
The first executed trade buys Free Coin, an obscure token.4 By
inspection, this difference in rates is a clear result of someone
using the exchange API and committing an off-by-one error,
offering to buy tokens at 10x the market rate. This created
a cross in the order book (sell order at more than a buy
order would pay), which when both executed by the same
arbitrage counterparty, generates the flow of funds in Figure 1.
While this opportunity probably arose from a typo, a variety of
revenue sources exist. For example, inconsistent price feeds,
or variance across exchange designs that respond to market
movements at different speeds can also create pure revenue.

Note that both orders are executed inside a single Ethereum
contract, and are executed in an atomic batch through a smart
contract proxy. In general, we model each opportunity as a
graph as shown in Figure 1. Edges represent currency flows,

4As of writing on Mar 13 2019, Free Coin is listed at currency rank 303
by market cap https://coinmarketcap.com/currencies/free-coin/.
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Example 2-Bot PGA Visualized

0x6BEc..6542/1453 Bids

0xb8D7..7a3f/1512 Bids

Auction Winner

Auction Loser

Seconds
Elapsed Quantity @ Price Bid Ethereum Transaction Origin (Public Key Hash) Nonce Transaction Hash

0.000 192085 @ 25.10 0x6BEcAb24Ed88Ec13D0A18f20e7dC5E4d5b146542 1453 0xd32653ca9694a6d1299335f3c04f74cc159bee48c1d32d3a421db08c638ffc78
1.593 231520 @ 25.00 0xb8D76f4BC2518F8eb508bf0Ccca76f8F9DD57a3f 1512 0xb901e6dc2c229fd9105448fcc23eaebdedb476c21b6c6e7ddf8d2df4e838d2c7
1.624 231520 @ 28.75 0xb8D76f4BC2518F8eb508bf0Ccca76f8F9DD57a3f 1512 0x9f592504eb71a7452b7a395a7f5ecd34eaa5d090da1162e74221562af54c8f67
1.679 227534 @ 28.81 0x6BEcAb24Ed88Ec13D0A18f20e7dC5E4d5b146542 1453 0x83e2a6774654a9540c3fad8837afcc88b4c932ab2374819254f887305c3a4b22

... ... ... ... ...
4.949 227534 @ 134.02 0x6BEcAb24Ed88Ec13D0A18f20e7dC5E4d5b146542 1453 0xc889bd13594f75e4dd824f04f0c2ad03896cb7ec6518df02455e9560367bb9c4
5.599 231520 @ 133.76 0xb8D76f4BC2518F8eb508bf0Ccca76f8F9DD57a3f 1512 0xaa86d782328c0c9c422e3f2a3170ff41ae21a27ad395c48db76b0080898f85db

... ... ... ... ...
13.383 227534 @ 5834.77 0x6BEcAb24Ed88Ec13D0A18f20e7dC5E4d5b146542 1453 0xb0dc97140394c5f65332ebc459d5e66f89099dbb4d335c866b32280270102858
13.416 227534 @ 7716.48 0x6BEcAb24Ed88Ec13D0A18f20e7dC5E4d5b146542 1453 0x1825be6951577e72a1dafc8de564ce1ccfe5d284173e11e77b2e7f6b1b44571c
13.462 231520 @ 7701.08 0xb8D76f4BC2518F8eb508bf0Ccca76f8F9DD57a3f 1512 0xa9823358c99149f0e6343c604c35988468d01d02868437d8251b3cee282dc92b

m13.759 231520 @ 8856.24 0xb8D76f4BC2518F8eb508bf0Ccca76f8F9DD57a3f 1512 0x366c30a534b5f3d8a6d251f97d401997624d1fe8d3af07ede4d19105dc970942

Fig. 2. One example PGA that was observed over the Ethereum peer-to-peer network, resulting from the profit opportunity in Figure 1. The top graph shows
the gas bids of two observed bots over time, while the bottom table details the first and last two bids placed by each bot and the two mined bids (center).

and nodes are either exchanges nodes (which receive one
currency and output another at the stated exchange rate), or
asset nodes (which are either sources or sinks for same-color
trade subgraphs, depending on whether they are bought or
sold). We label exchange nodes with the exchange name and
trade rate, and asset nodes with the asset symbol.

The net revenue in each traded asset is the sum of in-
flows minus outflows in the corresponding asset node. In
the trade in Figure 1, the revenue for ETH was therefore
0.93 ETH − 0.14123 ETH ≈ .79 ETH, or approximately
267 USD in equivalent value (at November 15, 2018 prices
of 338.15 USD per ETH). Approximately 496,000 residual
FREE was also left in the arbitrageur’s account, although less
significant and liquid than the ETH revenue.

To calculate the transaction profit, we subtract the cost from
the revenue, in this case the gas paid by the transaction that
was mined for the arbitrageur. Transaction 0xc889...b9c4 paid
a gas price of 134.02 Gwei (the canonical unit for representing
gas rates; 1 Gwei = 10−9 ETH). The transaction used 113, 265
gas, approximately equivalent to 113, 265 computational steps.

It is worth noting that transactions that cancel their bids can
use less gas, as they pay only for attempted execution (execu-
tion requires costly computational steps). This will be relevant
to later models in Section V-A. Furthermore, complex con-
ditional transactions, price queries, or other computationally
intensive order preferences will obviously cost more, making
optimizing for gas consumption important in the development
of competitive bots. The total cost of this transaction was
therefore 113265 · 134.02 Gwei = 0.01518 ETH, or around

5.13 USD at the time of the transaction. The associated profit
was therefore ≈ .79− .01518 = .77 ETH, or 267 USD.

C. PGAs, Ordering Fees, and... HFT?

Ethereum transactions are routed in a peer-to-peer gossip
multicast protocol by client node software. This means that
all transaction information is available to all participants in
this network, but earlier to participants with advantageous
positions in the gossip topology. Additionally, nodes can
simulate the outcome of every transaction given the current
or expected system state. Once an arbitrage transaction is
submitted, therefore, the sequence of trades it involves is
publicly known by the network’s peer-to-peer nodes.

A natural question then arises: how is priority determined
between arbitrageurs? Because each pure profit opportunity
carries some computable profit p and is broadcast globally,
a competitive game naturally ensues among arbitrage bots
to be the first to execute an atomic transaction that exploits
the opportunity. The mechanics of the system dictate that
all subsequent transactions in the game will fail. How this
particular game plays out depends on the peer-to-peer relay
network mechanics of the underlying blockchain, as well
as mining pool strategies and order book designs in the
underlying exchanges. We present a greatly simplified model
of this game formally in Section V-A.

In Ethereum, the PGA game we observe consists of transac-
tions issued with the same (account, nonce) pair, expressing a
bid to a miner, where the miner is paid gas fees as described
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in Section II-B. We call this interaction of issuing repeated
bids a priority gas auction, or PGA.

To place a bid on an arbitrage opportunity, an arbitrageur
simply issues a smart contract transaction with associated gas
price g that atomically bundles multiple trades (performing
the arbitrage). If they later wish to increase this bid, either for
strategic reasons or because they notice a higher bid that would
eliminate their profit issued on the peer to peer relay network,
they simply reissue the transaction with the same nonce and
a higher gas price g′. If two arbitrageurs are bidding against
each other, what emerges is essentially an auction, as shown
in Figure 2. It is in a miner’s interest to order first whichever
transaction offers the highest price (if the miner does not plan
on itself arbitraging the market). This approach will encourage
arbitrageurs to bid each other up for transaction priority.

Figure 2 shows the action that occurs in such an auction
from the point of view of the network. Each row in the
associated table is a transaction observed by our Ethereum
monitor on the peer to peer network, using the experimental
harness described in Section IV. In this example, we see two
accounts, 0x6BEc...6542 with nonce 1453 and 0xb8D7...7a3f
with nonce 1512, bidding against each other for priority. These
accounts issue transactions with ever increasing gas prices:
bot 0x6BEc...6542 issues 42 transactions in 13.4 seconds, and
0xb8D7...7a3f issues 43 transactions in 12.1 seconds. In 4.94
seconds, the auction is over. The transaction that eventually
ends up mined with priority is shown with a green star, and is
transaction 0xc889...b9c4 issued by bot 0x6BEc...6542. This
bot is considered the winner, and pays the full gas price to
reap the revenue as described in the previous section. The
transaction was mined in block 6709727 by the mining pool
“MiningPoolHub”. The transaction shown in the red square,
with hash 0xaa86...85db by bot 0xb8D7...7a3f, is also mined
and included in the final block, as each (account, nonce) pair
can include one transaction in the next block to be mined as
per the protocol. Miners are incentivized to include even failed
transactions, as these transactions pay for attempted execution.
Note that while the winning transaction used 113,265 gas in
execution, the losing transaction paid for 33,547 gas units, a far
smaller sum. In game theoretic terms, each auction represents
a variant of all pay auction, where instead of paying their full
bid, the loser is forced to pay a percentage to the miner.

IV. ARBITRAGE PREVALENCE MEASUREMENT STUDY

We now present empirical measurements of the prevalence
of arbitrage. We discuss our methodology (and its limitations).

A. Experimental Setup

We first describe the experimental harness used to observe
PGA transactions, displayed in Figure 3. On-chain data is
not sufficient to analyze PGAs, as all but the final “winner”
transaction are discarded by the network. Furthermore, be-
cause transactions are replaced so quickly and nodes don’t
propagate replaced transactions, many transactions are never
even propagated to all Ethereum nodes.

Ethereum

Ohio

Oregon

S. Carolina

Frankfurt

Sao Paulo

Seoul

Monitoring infra Databases

Google

Postgres

Python parsing &
processing scripts

WebCSVs released Figures
for reproducibility interface and graphs

SQL DB

BigQuery

network

Fig. 3. Deployed PGA measurement infrastructure architecture.

No tools existed for analysis of unconfirmed and rejected
transactions, so we wrote our own. We forked the Go-
Ethereum client to record unconfirmed transaction in the mem-
pool. We deployed six geodistributed nodes across multiple
data centers, with timestamps synchronized to the nanosecond
level by NTP. We collected an observation every time one of
the ≈ 256 nodes peered with one of our deployed modified
nodes relayed a transaction to us. We collected nine months of
data, amounting to over 300 gigabytes, including 708,385,840
unique observations of PGA arbitrage bots. Node locations
are shown in Figure 3, although not all nodes were online
throughout the experiment. (We ultimately sacrificed timing
resolution to reduce prohibitive ongoing costs.)

Because it is technically infeasible to store observations of
every Ethereum transaction, we focus on a list of suspected
arbitrage bot transactions. This list is seeded with accounts
we observe performing pure revenue transactions on the
blockchain, and is updated dynamically any time a high-value
gas replacement transaction is seen at an order of magnitude
over current gas market price. We also built a web interface
to manage the uptime of our nodes and associated bot lists.

We supplemented this mempool data we collected on PGAs
with on-chain data sourced from Google’s BigQuery Ethereum
service (as well as other on-chain metadata, like block times-
tamps), allowing us to parse logs for successful transactions
and determine their profit. We also used daily price data from
coinmetrics.io for USD conversions.

We then developed a suite of Python scripts to combine
and analyze this data. These scripts use a heuristic to place
all observations on a timeline, identifying a PGA whenever a
high-value gas replacement transaction occurs. All transactions
in a time interval around this observation are then considered
part of the “auction,” and broken down per bot. The scripts also
aggregate meta-statistics on PGAs, calculating strategy and
latency trends in observed bots. This data is used to generate
both our web interface and the figures in this paper. We
release all source and processed/derived data in CSV format
for further analysis by the community on our Github.

1) Instrumentation Limitations: The above instrumentation
has limitations that may affect our data quality. We describe
them at a high level here, and mention any impact these
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limitations may have on our derived results throughout.
It is possible that a transaction will be replaced before

reaching our nodes, though this seems unlikely, since each of
our observed transaction tends to have hundreds of associated
observations. More critically, our time-slicing method for
identifying PGAs may lump together unrelated bot activity
into a single “auction.” Manual inspection suggests that be-
cause auctions are relatively infrequent (every few hours), the
majority consist of correlated bot activity. Time-slicing could
also harvest unrelated transactions from other arbitrage bots
that are not PGA behavior; we prune these in our aggregate
statistics by only including bots that have placed at least 4
“bids” in an observed PGA, and as a result may lack data
on bots that place < 4 bids. We also may miss bots whose
addresses are not in our PGA lists, leading to missing bidders
in certain auctions.

Lastly, our instrumentation calculates pure revenue oppor-
tunities by parsing transaction logs on supported exchanges
for transactions that contain more than two trades executed
by a smart contract. We support only a limited subset of pop-
ular DEXes, omitting revenue opportunities on unsupported
exchanges. Because we aim to establish a lower bound (i.e. a
potentially too conservative result), we feel this is acceptable.
Our supported exchanges include the top five DEXes by
sustained volume at the time of infrastructure development.

This subset still proves sufficient to provide substantial
insight on the PGA market not afforded to regular nodes in
a blockchain context, highlighting the limits of the “trans-
parency” afforded users by these systems.

B. Observations
We now describe key results of our data gathering.
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Figure 4 shows the size (breadth) of the arbitrage market,
denominated in ETH. We choose to use ETH denominations
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Fig. 5. Top exchanges by cumulative pure revenue offered bots since 04/18.

in the rest of the work as they display a relatively consistent
distribution, as shown in the figure. USD revenues are more
volatile, as is visible in the market revenue graph discussed in
Appendix B-A.

This distribution is consistent with common understanding
of arbitrage as sourced from market structure design, as ETH
is the most liquid traded token on this market. As seen in
this graph, after the initial market development in late 2017, a
relatively active period of arbitrage occurred during which bots
often performed over 1,000 daily trades for a daily revenue of
10-100 ETH. Later, the market matured into a more steady
and consistent profit distribution, with 1-10 ETH available
for arbitrage daily. Recently, an increasing number of pure
revenue trades is observed, showing the trend of the DEX
market to smaller retail transactions and more efficient market
designs, decreasing the average opportunity size but presenting
more frequent opportunities to a more efficient bot market. The
limitations in our instrumentation mean, however, result in an
underestimate of market size, as described in Section IV-A1.

Interestingly, Figure 4 also highlights the origin story of
this work. In August 2017, we published a preliminary report
on the dangers of decentralized arbitrage and associated bot
designs in [2]. The date of our blog release is shown as
the vertical line on the graph. As part of this post, we
actively probed the Etherdelta orderbook for pure revenue
opportunities, measuring available profit at 4,472.75 USD /
day or 1.6M+ USD / year. We executed our own trading bot
to confirm the technical feasibility of profit, observing a total
58% rate of success in capturing pure revenue for our own bots
(soon outcompeted by other bots after the release of our post).
We calculated the expected daily profit of an arbitrage bot at
the time, before most decentralized exchanges were online,
at 0.32 ETH/day ·58.3% success ·45 − 0.004 · (1 − 58.3%)
failure cost * 45 observed opportunities = 8.32 ETH (2500
USD) daily profit. Note in Figure 6 that the majority of
profitable bots today joined shortly after our public release,
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which inadvertently sparked a thriving cottage bot economy!
Figure 5 shows the breakdown of the pure revenue market

by exchanges, since 04/18 (the first significant pure revenue
opportunities outside Etherdelta, representing new exchanges
coming online). An oligopolistic pure revenue market is ob-
served, with Etherdelta generating the majority of observed
pure revenue. Nonetheless, a range of other exchanges fur-
nishes a growing and relatively consistent distribution of
opportunities for bots. Because we only support certain ex-
changes, unsupported exchanges may be missing from this
graph, and the market total provides a lower bound only.

Figure 6 shows the top ten transaction senders we observe
in the competitive pure revenue market, and their associated
profits. The cost we measure for these bots includes only the
gas fees for the pure revenue transactions they make, and thus
may underestimate their total fees (e.g. for failed transactions).
We also do not include any bots that do not trade on our
supported exchanges. Note that we make no effort to group

transaction senders together to consolidate multiple senders
operated by a single entity; some heuristics are available for
doing this (e.g. monitoring use of similar arbitrage contracts),
but we leave such aggregation to future work. We focus on
USD on this graph, as we believe that most actors use fiat
currencies to pay participation costs.

As in the exchange breakdown, this figure suggests an
oligopolistic market, with single bots often dominating the
profit space for extended time periods (for example, 0xaa24...
dominates the recent pure revenue space, where 0x0000...
experienced a long period of dominance through late 2017
and early 2018). This diagram also shows the behavior of top
bots exiting the market after failing to update their strategies.
For example 0xa53... exits around 03/18, and 0xf13... exits in
late 2017, early in the market. Nonetheless, many bots enjoy
extended runs of profitability, and continue operating for years.

Interestingly, the revenue and profit graphs for these bots
have nearly identical shapes (the revenue graph is described
in Appendix B-A). Profit-to-revenue ratios are relatively well
distributed, with a median of 65% of the revenue of an
opportunity captured by the winning bot according to our profit
heuristics. Most opportunities are also uncontested, providing
the bots a steady stream of income.

Thusfar, we have focused exclusively on pure revenue
opportunities, which may lead to PGAs or may be claimed by
a single bot uncontested. A natural question becomes whether
the profitability of opporutnities persists in a competitive
market, or whether competition among bots creates a generally
unprofitable zero-sum or negative-sum environment.

Figure 7 describes the breakdown between the profit and
revenue of observed pure revenue opportunities involved in
priority gas auctions, indicating that at least one bot placed
a competitive gas replacement bid to capture such an oppor-
tunity. While there is a spike around 0 profit, indicating that
many PGA opportunities are zero or negative sum for their
players, the vast majority of these opportunities see relatively
insignificant costs, and the profit distribution still provides a
mean profit to winning bots that offers them a majority of
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associated revenue. This confirms our suspicious that bots
may be engaging in uncoordinated cooperation to maintain
the profitability of the PGA market at the expense of miners,
which we model fully in Section V.
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A final natural question to ask about the market is the
extent to which the gas used in a transaction (representing
the “quantity bid” in a PGA) is an important competitive
optimization vector for pure revenue bots. Figure 8 shows
this optimization over time. Before 04/18, primarily Etherdelta
trends are observed. As we expect, we see bots optimizing
their gas costs with a clear downward trend over time, de-
spite relatively consistent execution of primarily pure revenue
transactions containing two trades per transaction.

The advent of more sophisticated exchanges shows market
maturation, with more complex opportunities executed that re-
quire more gas per trade. The number of trades per transaction
has also increased, now averaging well over two trades per
transaction. Part of this trend is due to “liquidity pooling”
exchange designs like Kyber, which allow use of an exchange
contract as a proxy to trade on other exchanges.

The dotted orange line on this graph shows the authors’
public release of a token called GasToken [7]. It leverages a
feature in Ethereum’s incentive model enabling arbitrageurs to
perform gas arbitrage over time, banking gas at below market
rates and deploying it to win PGAs. The mechanism by which
this gas arbitrage is performed yields a transaction refund
in the quantity bid to miners, tricking miners into accepting
smaller than expected bids. Because this allows bots to bid
higher gas prices for less quantity at the same level of cost,
this token is now a requirement for participating competitively
in the pure revenue arbitrage market. This is reflected in
our trends graph as a sharp downtrend in gas quantity bots
demand from miners after release of our token. This anecdote
provides unusual insight on consequences of performing active
experiments on emerging competitive markets.

C. User Comments

One unique feature of Ethereum over other market designs
is the public nature of some of its trading data. For example,
the addresses of the arbitrageurs in Figure 6 are known, and
can link different trades by a single actor. This often allows
users to see which arbitrage bot targeted a transaction they may
have made, and to comment on bot activity on generic public
comment pages on blockchain explorers. The top sender in
Figure 6, for example, appears to often profit off typographical
errors users make in their decentralized exchange trades.5 One
user, “Getcoin Hub Inc.”, pleads with this arbitrage bot, saying
“This was obviously a mistake transaction - any chance you
can find it in your heart to send it back?”. Another, Benjamin
Huffman, pleads with the bot that “I am a single parent trying
to make ends meet at a job I hate. Please have some mercy.”
Yet another, Alfie, leaves a comment requesting the return of
their ETH, stating ”Please I ask you to send me the ETH back
as I really need it to continue my education. I might need to
sell my car to pay what is already due for this semester.” Worse
still, one user, Rajesh Kumar, claims “sir this was error order.
please give back eth sir. this all of my village rupee I trade
for them. if i do not receive back eth i will be in the **** sir
please”.

While it is impossible to verify the authenticity of these
anonymous comments, their existence does point to the effect
that exchanges with bad usability properties and flawed market
designs can have on the guarantees provided their users. The
existence of multiple users losing a large chunk of funds
through such flawed exchange designs embodies the need for
carefully considered and formalized guarantees for DEXes.

V. PRIORITY GAS AUCTION (PGA) MODELING

To shed light on the strategies we observe in practice, we
present a formal model for PGAs in this section. We then
explain the notion of advantage that we use to understand
strategies’ effectiveness, and study several classes of observed
strategies in the context of our model.

We provide informal, high-level intuition about the games
both miners and bots play in Appendix C.

A. Model properties

We model a PGA as a sequential game among a set of n
players {P0,P1, . . . ,Pn−1} who bid against one another to
obtain a payoff of $1.6

This game has the following properties, which model
blockchain dynamics:

a) Continuous time: Players act in continuous time,
rather than discrete rounds (as in typical extensive-form
games). This is because blockchain networks are asyn-
chronous.

5These comments were sourced from https://etherscan.io/address/
0x0000F7F39325076881E5fC566E99595542532aE2#comments, though
similar pages exist for several of the bots in Figure 6 and our data.

6In this “dollar auction,” $1 represents a normalization of any payoff
amount w.l.o.g., and includes gas costs for the winner.
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b) Imperfect information: Players eventually see one
another’s bids, but not immediately, a feature modeling
blockchain network latency. Player Pi observes other players’
bids after some fixed time ∆i. Players may have differing
latencies, small ones conferring a competitive advantage.

We measure latency as a relative figure to the latency of the
miners, which are typically the best connected nodes in the
network. Thus ∆i = 0 indicates that Pi has a superior network
position and observes other player’s bids with no additional
delay over that of the miners.

c) All pay: In PGAs, losing players pay gas costs for
their failed transactions. Our model captures this cost by
having a losing player P pay `($blast), where $blast is the
last bid made by P and `() is a loss function.7 This type of
all-pay auction in which players can submit multiple bids is
known as a dollar auction [44], in which not only the winner,
but losers pay. In our study, we typically observe auctions that
are partial all-pay, i.e., `($blast) < $blast.

d) Probabilistic auction duration: The auction ter-
minates at a randomly determined time, namely when the
next block is mined. For proof-of-work blockchains such as
Ethereum, we model a block interval as a random variable D,
which is exponentially distributed.

e) Rate-limited bidding: A player cannot raise her own
bids continuously, but must wait a short interval δ to do so.
This reflects throttling that blockchain peer-to-peer networks
perform to prevent flooding attacks. As miners are always free
to include the highest paying transaction that they observed,
players can only raise bids, not lower them (a natural auction
feature that holds in Ethereum PGAs).

f) Minimum starting bid: While there is no required
minimum gas price in Ethereum, in practice PGA participants
will want to start their bid at a price that gives them a good
chance of getting included in the next block. Put another way,
if one bids too low, then even if nobody else bids against
them, a miner may not include the transaction in their block.
Thus, although not strictly enforced, we model our auctions
as having a minimum starting bid, s.

g) Minimum bid increments: Players do not have
freedom to raise bids by arbitrary increments. Instead, there
is a minimum bid raise, ι, measured as a function of the
player’s previous bid. This matches Ethereum dynamics in
which one can replace their transaction with another one, but
it will only be relayed by the peer-to-peer network if the gas
price has increased by a minimum threshold. Parity, the most
common Ethereum node software, enforces a default minimum
increment of 12.5%.

Importantly, the bid increment restriction for Pi is entirely
a function of the Pi’s previous bid, but there is no enforced
relationship between the bids of competing players. That is,
players can outbid one another by arbitrarily small quantities
so long as they are sufficiently raising their own previous bid.

In practice, network latencies and transaction-interval times
are stochastic, but we assume constants ∆i and δ to simplify

7As we explain above, bots use various tricks to reduce `.

our analyses. We believe that this simplification does not
significantly affect strategy outcomes.

Continuous-time, imperfect-information games have seen
only limited study. Most similar to our work is FlipIt, a
continuous-time game with imperfect information that models
advanced persistent threats (APTs) [47]. We are unaware of
any prior work on such games with random play times or in
general with the structure of PGAs.

B. Formal PGA model

For simplicity, we focus on games where n = 2, i.e., that
involve a pair of players (P0,P1). Our formalism, though,
can be generalized to any n. The restriction to two players
is supported by our empirical observations, which shows that
most PGAs were played out between two players.

We let b = (t, $b; i) denote a bid by player Pi. Here t is
the time at which the bid is placed, $b is the bid price, and
i ∈ {0, 1} is the identity of the bidder.

We denote by b∗ the sequence of all bids published to the
network by all players at the current time t∗, and b the full
sequence of all bids made by all players up to the point at
which the auction ends. We let b[t] denote b at a particular
time t. We let bi and its variants (e.g., bi[t]) denote a bid
sequence of player Pi.

A strategy Si for player Pi is a procedure for participating in
a PGA, and may be probabilistic (“mixed,” in game-theoretic
terminology). Si takes the following form, where input t∗ is
the current time and σi is the current local state of Pi:

(a, tw,σ
′)←$Si(b

∗, t∗, σ).

The output a is an action by Pi. Either a = b for some bid b,
or else a = ⊥, indicating the player is not placing a bid. The
output σ′i represents an internal state update for the player.

Finally, tw≥t∗ is a wake time. This is the time when Pi
schedules its next execution assuming no bids appear in the
meantime. The use of wake times means that w.l.o.g., we can
assume that a player always emits a bid b = (t∗, $b; i), i.e., for
immediate publication. We also assume that when executed at
an emitted wake time, a player always emits a bid; a player
that chooses not to schedule a bid can set tw=∞.

a) Game execution: A game between P0 and P1 involves
an execution Exec(S0, S1, [D, `()]) of their respective strate-
gies, and accounts for players’ imperfect information due to
their latencies. We specify the procedure for Exec in Figure 19
in Appendix D.

b) Payoffs: Players (bots) compete for financial rewards.
We measure these rewards using the standard game-theoretic
notion of a payoff. An execution Exec(S0,∆0, S1,∆1[D, `()])
outputs a pair ($r0, $r1). These are the respective payoffs
(profits or losses) of P0 and P1.

We define the payoff of S0 against S1 as follows:

POExec
(S0,∆0)(S1,∆1)[(D, `())] =

E[$r0 | ($r0, $r1)←$Exec(S0,∆0, S1,∆1, [D, `()]).
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.
We refer to a strategy S0 as null-profitable if

POExec
(S0,∆0)(S∅,∅[(D, `())] > 0 when S∅ is the null strategy

(i.e., a strategy that never bids and thus its latency is also
irrelevant).

C. Why repeated bidding?

To understand the significance of our model, it is helpful to
see why players’ optimal strategies involve placing multiple
bids over time. To show why, it is helpful by contrast to
observe two settings in which players’ optimal strategies
involve placing a single bid.

a) Sealed-bid auction: Suppose that instead of the com-
plex game just outlined, a PGA were a standard sealed-bid
auction (either first or second price, with `() = 0) [41]. Players
bid once and ties are broken randomly.

Players would then be incentivized to cast a single bid as
close as possible to 1, throwing away almost the entirety of
their potential profit. This behavior is intuitive.

If bids are discrete, with tick sizes (smallest increments) of
ε, then there is a Nash equilibrium for S0 = S1, the strategy
of bidding 1− ε. In this case, POExec

S0,S1
[(D, 0)] = ε/2. Notice

that since only one bid is cast and its sealed, we omit the
latency parameter as it is irrelevant. This is the only Nash
equilibrium for deterministic strategies, since a deviation that
bids an extra ε would otherwise be profitable. For randomized
strategies, non-cooperative players will converge towards this
equilibrium after playing multiple games in which they study
one another’s behavior.

b) Fixed block duration: Returning to our model, when
∆i,∆j > 0, placing multiple bids is a useful strategy only
when D is a random variable. The reason is that given a block
interval of fixed duration d, players can place the equivalent of
sealed bids in the interval [d−δ, d] after the mining of the last
block. Thus, in this setting the only reason for repeated bidding
is on-chain signaling of intent, which is more expensive than
out-of-band communication.

c) Proof-of-stake blockchains: Notably, sealed-bid auc-
tions are likely to be the norm on proof-of-stake blockchains,
due to two reasons. First, in many proof-of-stake protocols the
identity of near future miners is known in advance (perhaps
anonymously, i.e., only the individual miner knows her time
slot). This implies that miners can accept bids over secure
(encrypted and authenticated) out-of-band channels. Second,
the block duration is quite predictable in proof-of-stake chains
– miners forfeit their time slot unless they broadcast their block
before a limit (measured according to the local clocks of other
miners) is reached. There is some measure of unpredictability:
the limit should be generous in order to accommodate propa-
gation delays in the network, and miners may wish to collect
many transactions that pay lucrative fees before broadcasting
their block. Still, the block duration should behave according
to statistical patterns that differ greatly from the stochastic
process of PoW blockchains. Our following analysis may thus
apply to proof-of-stake systems with a high enough measure

of unpredictability, though sealed-bid auctions are significantly
more likely in such systems.

D. What’s a good strategy?

Subject to their individual latencies, all players have iden-
tical strategy spaces, and thus we can directly compare strate-
gies while only considering the latencies of the players that
executed them. We define

Advexec(S0,∆0),(S1,∆1)(D, `()) =POExec
(S0,∆0,(S1,∆1

)[(D, `())]−
POExec

(S1,∆1),(S0,∆0)[(D, `())].

VI. PRIORITY-GAS-AUCTION STRATEGIES

We now report on classes of strategies that we have observed
empirically and examine them within the context of our model.
Given the large strategy space, we restrict our focus to the most
prevalent PGA strategies that we have observed.

We thus consider three classes of strategies. The first two
strategies are blind raising and counterbidding, which are
often used in competition with one another. We then consider
a cooperative strategy in which players take turns bidding.
While we don’t claim that we are seeing perfect cooperation
(since if we were there would be no need for on-chain bidding
at all), we show the cooperative strategy approximates and
predicts a large class of behaviors that we have observed on-
chain. Finally, we show that under conditions consistent with
the PGAs we are observing on Ethereum, there exist Nash
equilibria for cooperative strategies.

A. Latency Wars

For all strategies that we consider, our model predicts that
players with a lower latency will have an advantage. Validating
this feature of our model, we have observed empirically
that players are consistently and substantially reducing their
respective latencies over time (Figure 9).

B. Blind raising

Blind raising is a simple non-adaptive strategy. Player Pi
raises her own bids under a predetermined schedule, and the
strategy is invariant to b∗1−i, the history of the other player’s
bids. In PGAs that we have observed, this schedule often
involves repeated increases by fixed fractional increments
(e.g., 12.5%, 21% or 70%). Basic blind raising is thus also
deterministic (“pure”). A basic version may be modeled as
follows:

Blind raising (S0): P0 emits a bid with amount $b0 at
time τ = 0 and $b0 × (1 + f)k at time kδ.

At first glance, this strategy, and non-adaptive strategies in
general, seem like a bad idea: They fail to exploit information
available to the player in b∗.

Surprisingly, however, the imperfect information created
by network latency means that a non-adaptive strategy can
achieve an advantage over natural adaptive strategies. The
intuition is this: By playing non-adaptively, a player can
publish a bid faster than by waiting to see the opposing
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Fig. 9. Evolution of the PGA bots’ latency strategies over time. Each point
is the mean latency of a bot in some observed auction on the plotted date.
The coloring of dots shows the number of total raises each bot placed in
that respective auction. Early in the observed market, the majority of auctions
contained 0-10 raises per bot. Over time, these auctions increasingly contained
more raises and a lower mean latency. We exclude all observed mean latencies
that do not fall between 0 and 1 seconds; there are such latencies, which are
the result of the limitations of our monitoring architecture mentioned in IV-A1.
The number of opportunities per bot, however, illustrates a trend that is far
less vulnerable to instrumentation limitations, as it does not depend on the
order or precise timing of observed transactions.

Reactive counterbidding (S1) :

• At time τ = 0, P1 bids s.
• Denote the most recent bid by P1 as $b1. P1

waits until it sees a bid $b0 > $b1 cast by P0.
P1 immediately counterbids min(max($b1× (1+
ι), $b1 + ε), 1 + `($b1)).

Fig. 10. Reactive counterbidding PGA strategy. ε is the minimum bid tick,
ι is the minimum bid increment, and s is the minimum starting bid. By
bidding max($b1 × (1 + ι), P1 ensures that its bid meets the minimum bid
requirement and is also higher than P0’s bid. However, it would never make
sense for P1’s bid to exceed 1 + `($b1)) as at this point it is more profitable
to not bid and instead pay `($b1).

player’s bid and reacting to it. We explain below in particular
how blind raising can achieve an advantage over a natural,
adaptive strategy called reactive counterbidding.

C. Counterbidding

Counterbidding is a strategy in which a player observes
an opponent’s bidding strategy and reacts by placing higher
opposing bids. A simple example of this strategy is what we
call reactive counterbidding, an adaptive strategy that a player
P1 might execute against another player P0. The strategy is
described formally in Figure 10.

Reactive counterbidding can achieve an advantage over a
blind raising strategy—provided, as we shall see, that ∆1 is
small with respect to δ. Counterbidding involves outbidding
P0 as quickly as possible by a small amount, provided that
the bid is raised by the required minimum.

As P0 has interval ≥ δ between bids, reactive counterbid-
ding achieves an interval ≥ δ between the bids of P1.

Many consensus algorithms (e.g., Nakamoto consensus)
exhibit D exponentially distributed with mean λ. Under the
simplifying assumption that `($b) = $c, we can show the
following two observations, which we prove in Appendix D.

Observation 1. Let ∆i = 0 and $r =
Advexec(S0,∆0),(S∅,∅)(D, $c) be the payoff of null-profitable
blind raising strategy S0 against S∅. Then for

$c

$r + $c
< e−λδ,

as ε → 0, reactive counterbidding strategy S1 has positive
payoff.

We now show, somewhat counterintuitively, that with the
right parameters—specifically, when ∆1 is high w.r.t. δ —
blind raising has an advantage over reactive counterbidding.

Observation 2 (Latency Amplification). For ∆1 > δ, there
exists a null-profitable, blind raising strategy, S0, such that
for any pure reactive counterbidding strategy S1, S0 achieves
Advexec(S0,∆0),(S1,∆1)(D, `()) > 0.

D. Cooperation

We now turn our focus to cooperative strategies, which we
believe to be a close approximation to a common behavioral
pattern we observe in which players slowly alternate raising
bids. We demonstrate a cooperative Nash Equilibrium for the
PGA game that helps shed light on the most common bidding
behaviors that we observed.

Notice that as bids are non-decreasing, with each successive
bid that players submit, the maximum profitability of the
opportunity decreases. Intuitively then, it is beneficial for all
players to decrease the total number of bids in the game.

It is natural then to assume that, whenever possible, players
will coordinate out-of-band to split the profits rather than
decrease their profits by competitively bidding on-chain. How-
ever, by the very virtue of us seeing on-chain PGAs, we know
that perfect cooperation does not exist.

For example, if we consider a repeated game in which the
same set of players is bidding on multiple (say for simplicity,
equal value) opportunities, they can coordinate off-chain so
that each opportunity only has a single bid on-chain and the
profit for bidders is maximized. Indeed, in our measurement,
we found many arbitrage opportunities for which there was
only a single player, and it is entirely possible that off-chain
coordination is at play here, although by its very nature there
is insufficient data on chain to confirm this.

While off-chain cooperation may make sense, particularly
in a repeated game, it has some drawbacks including lack of
anonymity. We restrict our analysis here to the more interesting
case of single game instances where players are bidding on-
chain and coordinate their strategies to maximize expected
profits Chief among them is that off-chain coordination is
cumbersome and requires participants to identify themselves
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Cooperative (Si) with parameters D,W :

• At time τ = V [2k+i], Pi emits a bid with amount
W [2k + i].

• If Pi observes a bid of value $b at time t such
that t < V [2k + i] but $b > W [2k + i− 1], then
Pi immediately bids $1 + `($b).

Fig. 11. Grim-trigger cooperative PGA strategy

and sacrifice anonymity. This allows us to gain insight into
the on-chain competitive auctions that we have observed.

As we will see, the cooperative strategies that we study
help explain the behaviors in many of the PGAs that we have
observed. Moreover, we show that under suitable parameters,
there is a Nash Equilibrium for both players to follow a
cooperative strategy.

We stress that for our cooperative equilibrium to emerge, it’s
not necessary that players explicitly coordinate out-of-band,
but this behavior can develop organically on-chain. Indeed, we
have seen evidence that over time, players have moved closer
toward a cooperative equilibrium, which is consistent with well
known results in experimental game theory that participants in
the wild will converge to an equilibrium over time [40, 13].

a) Grim trigger equilibrium: We now describe a partic-
ular cooperative strategy in which any defection is responded
to by immediately bidding the maximum amount, thereby
eliminating all profitability from the auction.

This strategy class is similar to the grim trigger strategy
that appears in the game theory literature in the context of re-
peated games [42]. Notice that since PGAs involve successive
opportunities to bid potentially in response to the bids of other
players, even a single iteration of our auction has elements of
a repeated game.

Consider two players who coordinate with the following
strategies: at set intervals, players alternate their bids, each
time bidding the minimum increase. If any player deviates
either by bidding too soon or by raising the bid higher than
they are supposed to, the other player will respond by raising
their bid such that the game is no longer profitable. This
strategy is characterized by following parameters: V is the
set of agreed upon times at which bids will be scheduled, and
W is the set of agreed upon bid values, such that that W [i]
will be bid by the appropriate player at time V [i].

The grim-trigger cooperative strategy is formally described
in Figure 11.

Notice that in the second condition, we assume that Pi can
determine the time t that the bid was emitted by P1−i. This is
consistent with our model in which the latency of each player
is known. Thus, even though Pi will not observe P1−i’s bid
until time t+∆i, it can compute t by subtracting ∆i from the
time that it first observed the bid.

As we will see, the knowledge gap due to latency is an
important feature when determining if our model has an
equilibrium. All defections will eventually be detected, but
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Fig. 12. Evolution of the PGA bots’ median raise strategies over time for bots
with more than 4 bids in pure revenue PGAs. Note the strategy convergence
in the iterated game to almost exclusively the 12.5 (minimum raise) and 15%
(deviation from minimum raise) levels. Opportunities below the y = 12.5
line are likely artifacts of bots emitting multiple transactions from globally
distributed nodes; these opportunities correspondingly show a bias towards
high revenue compared to those using the predicted strategies. We trim outliers
and omit points with median raises over 75%; we observe 5 such high-raise
outliers of 4,007 total observations.

depending on the latencies, there may still be sufficient time
to profit from deviating.

b) Minimum bid raises: In a cooperative PGA, the main
function of bidding on-chain is to alternate bids between
players, but all players are incentivized to keep the actual bid
price as low as possible to maximize profit. The following
observation follows:

Observation 3. In a grim-trigger cooperative PGA, for all
i ≤ imax, the optimal choice for bids is W [0] = s and W [i] =
W [i− 1]× (1 + ι).

Remarkably as shown in Figure 12, in our observed PGAs,
players converge over time to a minimum bid raise of 12.5%,
which is the minimum allowed raise in the Parity client. It
is known that players in the wild will converge to Nash
Equilibria [13, 40] and this on-chain behavior is consistent
to a convergence toward elements of cooperative equilibrium.

We stress that we don’t claim that perfect cooperation is
occurring or even that our exact equilibrium is on play. We
do claim, however, that players are converging to a more
cooperative state, that is approximated by our model, in which
they allow opportunities for other players in an effort to
maximize their own expected profit over time.

c) Nash equilibrium: We now present our main result
showing that there exist Nash equlibria for a wide range of
parameters using the grim-trigger cooperative strategy.

Theorem 1. For parameters consistent with Ethereum PGAs,
there exist a grim-trigger Nash equilibria for a 2 player PGA
where both players follow a D,W cooperative strategy.

Figure 13 and Figure 14 show the expected payoff of
the bidder and non-bidder in a cooperative PGA. The x-axis
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Fig. 13. Cooperative PGA with interval t = 2

Fig. 14. Cooperative PGA with interval t = 0.4

indicates the starting time of the interval, where the expected
duration of the game is 1/λ = 15 seconds. The y-axis indicates
the expected payoff. Note that the players are alternating: if
Player 1 is the bidder and Player 2 is the non-bidder when the
first interval starts, then Player 1 is the non-bidder and Player 2
is the bidder when the second interval starts. These figures also
display the profitability of deviation, i.e., the expected payoff
of the non-bidder (according to latency parameters) in case
she deviates when the interval begins.

If the deviation payoff surpasses the non-bidder payoff at
any point (as with the delay=3 plot in Figure 13), then
a Nash equalibrium cannot hold for those parameters – a
backward induction argument implies that if it is profitable
for the non-bidder (say, Player 1) of interval i to deviate, then
it must also be profitable for the non-bidder (Player 2) of
interval i− 1 to deviate, and so on.

Figure 14 corresponds to the Ethereum parameters per our
empirical measurements: t = 0.4 seconds is the mean interval
length and δ = 0.1 seconds is the estimated latency in our
measurements.

To prove our main claim, let us recall that each player’s bid
increments her previous bid by 12.5%. Given our measure-
ments, this implies 17 rounds before the players give the entire
auction’s reward to the miners. We can thus verify that in each
of the few dozens of intervals prior to the end of the game,
the expected payoff of adhering to the cooperative strategy

is larger than the expected payoff upon deviation. Indeed,
the Ethereum parameters that are plotted in Figure 14 show
that the expected non-bidder payoff is always greater than the
expected payoff of deviation. Theorem 1 thus follows.

VII. MINER-EXTRACTABLE VALUE AND BLOCKCHAIN
SECURITY

PGAs and DEX arbitrage may not seem immediately harm-
ful or relevant to the security of an underlying blockchain.
They might simply seem an efficient mechanism for convey-
ing market information among network participants. Unfortu-
nately, we now argue, DEXes in fact present a serious security
risk to the blockchain systems on which they operate, i.e., at
the consensus layer. In other words, a key result of our work
is that application-layer security poses a current and direct
threat to consensus-layer security.

In a stable blockchain, block rewards incentivize honest
miner behavior. As we show empirically in this section,
though, order optimization (OO) fees, or implicit fees a miner
is able to reap by leveraging their control of a consensus
epoch, can exceed the block reward and instead incentivize
forking attacks. To capture OO fees, a miner can reorder
users’ transactions and potentially insert their own, reaping
profit in Ether directly to their account. For example, a miner
could execute the pure revenue transactions described in this
work themselves, while still claiming the PGA fees for all the
“losing” arbitrage bots attempting to do the same.

OO fees represent one case of a more general quantifiable
value we call miner-extractable value (MEV). MEV refers to
the total amount of Ether miners can extract from manipulation
of transactions within a given timeframe, which may include
multiple blocks’ worth of transactions. In systems with high
MEV, the profit available from optimizing for MEV extraction
can subsidize forking attacks of two different forms. The first
is a previously shown undercutting attack [14] that forks a
block with significant MEV. The second is a novel attack,
called a time-bandit attack, that forks the blockchain retroac-
tively based on past MEV.

Undercutting attacks were previously considered a risk
primarily in the distant future, when block rewards in Bitcoin
are expected diminish below transaction fees. By measuring
the significance and magnitude of OO fees, our work shows
that undercutting attacks are a present threat.

Time-bandit attacks are also a present and even larger
threat. They can leverage not just OO fees, but any forms of
miner-extractable value obtained by rewinding a blockchain.
Time-bandit attacks’ existence implies that DEXes and many
other contracts are inherent threats to the stability of PoW
blockchains, and the larger they grow, the bigger the threat.

A. OO fees: Measurement study

We now lower bound the severity of OO fees in DEXes.
Figure 15 shows the distribution of pure revenue OO fees

as a fraction of total miner-extractable value in Ethereum. We
conservatively estimate MEV in this context as the sum of
explicit transaction fees and pure revenue OO fees, making
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Fig. 15. Distribution of pure revenue OO as percentage of block transaction
fees in blocks containing such transactions on the Ethereum network, blocks
3875490 to 7408826; 133,815 of 3,533,336 contain observed pure revenue
(3.6%). Since block 7,000,000 (Jan 2 2019), this has increased to 6.3%.

our distribution an underestimate of the share of MEV that
does not come from explicit fee payments in Ethereum. Note
that PGAs themselves are an indirect mechanism for miners
to claim OO fees: if miners instead claimed OO fees directly,
there would be no incentive to bid in or create a PGA.

Of all blocks since block 3,875,490 (the first block we
observed with a pure revenue OO fee from decentralized
exchange arbitrage), approximately 3.6% contain at least one
pure revenue arbitrage transaction. Of these blocks, 17,897
blocks contain pure revenue OO profits that are < 1% of
the total stealable fees, confirming our earlier conclusions
that the most frequent pure revenue arbitrage opportunities
are for small price differences in the course of normal trad-
ing across exchanges. Nonetheless, many blocks do contain
substantial pure revenue fees. 36,860 observed blocks contain
pure revenue fees that exceed 20% of total stealable fees,
12,002 blocks derive the majority (over 50%) of stealable fees
from pure revenue, and 2,517 blocks derive more than 80%
of stealable fees from pure revenue.

Occasionally, these fees can be substantial and provide
substantial miner incentives to orphan blocks or otherwise
deviate from the mining protocol. Figure 16 shows the 20
blocks observed on Ethereum with the highest absolute pure
revenue OO fees.

As an example, the highest block, block 7029147 (https:
//etherscan.io/block/7029147), contained an arbitrage trade
generating a revenue of 101.6 ETH, dwarfing the block reward
of 3 ETH and the insignificant explicit transaction fees of
0.022 ETH. In this particular block, one transaction generated
all the pure revenue OO fees. This transaction, whose profit
graph is available at https://bit.ly/2D4U57c, saw an exchange of
Bigbom token (BBO) for ETH on Bancor and Kyber; an error
in Bancor’s pricing formula allowed a user to buy BBO at
rates far under market. The bot’s order size was 101.6 ETH,
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Fig. 16. Blocks with the highest pure revenue OO fees observed on Ethereum.
As is shown here, OO fees in these blocks dominate both block rewards and
transaction fees, often by more than an order of magnitude.

of which almost all was taken as pure profit.
As with all our analyses, we stress that our measurements

are conservative: They represent lower bounds on arbitrage
behavior. The limitations in our instrumentation harness dis-
cussed in Section IV-A1, lead to potential underestimation.

B. Undercutting attacks

Undercutting attacks [14] represent one vector of attack that
can leverage OO fees.

It is well known that fixed per-block miner rewards are
a key feature of secure and stable cryptocurrency protocols,
as originally described in [14]. In that work, the authors
analyze the incentives of blockchain miners in a regime where
transaction fees exceed the inflationary subsidy paid to miners
by a blockchain protocol. They observe that when the block
reward is dominated by fees, rewards have high variance. As
a result, a miner can fork a high-fee block, holding back some
fees to attract other miners to build on the fork. In extreme
cases, incentives to deviate from the protocol may lead to
disruption in miner strategies for economically rational miners,
reducing the security provided by block confirmations.

Prior to our work, transaction fees have been viewed as
the only source of value for undercutting attacks, with [14]
even calling a world in which fees dominate block rewards
a “transaction-fee regime.” That regime seemed a distant
prospect. The title of [14], “On the Instability of Bitcoin
Without the Block Reward,” refers to Bitcoin block rewards
going to zero, an event anticipated around the year 2140.

Our study shows that OO fees are a form of value that
sometimes dominates explicit transaction fees today. The tail
of the distribution in Figure 15 (transaction fee proportions >
0.5) and all of the example blocks in Figure 16 represent such
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opportunities. In other words, undercutting attacks represent a
present threat in Ethereum, and one that will grow with the
success of smart contracts that attract OO fees. Other potential
sources of OO fees are mentioned in [15].

Most importantly, our view of arbitrage remains conser-
vative, and we emphasize that pure revenue opportunities
represent a small slice of total ordering fees. There are many
possible sources of ordering fees payable to miners, includ-
ing more sophisticated arbitrage. There are also many other
forms of miner-extractable value. Miners can “steal” arbitrage
opportunities from arbitragers by taking them themselves.
Additionally, the survey in [18] describes several other sources
of MEV, including the ability to buy into profitable ICOs early
and the manipulation of games of chance.

Undercutting attacks can leverage OO fees or any other
MEV from newly generated blocks. The second attack we
describe can use MEV from past blocks to subsidize an attack.

C. Time-bandit attacks
We now describe time-bandit attacks, a new, second attack

vector that can exploit miner-extractable value. They can
exploit MEV from new blocks, but more powerfully, can also
use MEV from past blocks via rewinding.

Time-bandit attacks are conceptually simple. Suppose a
blockchain has a suffix (subchain) [height0, height1], with
current block height height1, in which stealable value exceeds
block rewards. An adversary can rewind to height0 and use
the resulting MEV to subsidize a profitable 51% attack that
mines a fork up to or past height1.

Of course, a time-bandit attack relies on real-time access to
massive mining resources. As noted in [6], however, “rental
attacks” are feasible using cloud resources, particularly for sys-
tems such as Ethereum that rely heavily on GPUs, which are
standard cloud commodities. Sites such as http://crypto51.app/
estimate the costs. We illustrate with an example that relies
on MEV from DEX rewinding.

Example 1. Consider a price spike from 1 USD to 3 USD in
a token that trades on an on-chain automated market maker
(e.g., Bancor [1]). A miner performing a time-bandit attack
can now rewrite history such that it is on the buy side of
every trade, accruing a substantial balance in such a token at
below market rate—before the price spike.8

For example, if the attacker wishes to rewrite 24 hours of
history, and 1M USD of volume occurred in exchanges with
rewritable history in that token, then the attacker can obtain
a MEV gross profit of 1 M × (3 USD - 1 USD) = 2M USD.9

At the time of writing (March 2019), http://crypto51.app/
estimates a 24-hour 51% rental-attack cost on Ethereum of
about 1.78M USD, implying a net profit of around 220K USD.

We stress that time bandit attacks are not limited to MEV
from DEXes. A variety of smart contract systems allow anyone

8The attacker can additionally use new user trades at the market 3 USD
price in the automated market maker system to offload their tokens into ETH.

9More sophisticated reordering strategies stand to profit the miner even
more. The miner can selectively include orders that manipulate the prices
received by other traders in the past.

to participate and earn profit for doing so, often a desirable
design goal for the style of permissionless and open interaction
that lends itself naturally to blockchains. Any on-chain action
in the past that could have potentially profited a miner today,
including actions that unconditionally earn them ETH in
the past, are thus potential sources for time-bandit attacks.
Because smart contracts are Turing complete scripts and carry
complex interactions, estimating the size of these opportunities
is a challenging problem we defer to future work.

Time-bandit attacks in Ethereum: Recent transaction statistics
suggest that Ethereum is vulnerable to time-bandit attacks.
For example, decentralized exchange volumes show a peak of
1.5 billion USD of traded assets on Ethereum’s decentralized
exchanges in July 2018 [23]. While it is hard to gauge the
total stealable value in this volume, the current estimated
one-month cost of a 51% attack on Ethereum according to
http://crypto51.app/ is approximately 56 million USD, more
than 25 times lower than this DEX volume.

We posit that the OO fees alone that we have described
threaten the security of today’s Ethereum network. As Fig-
ures 15 and 16 show, blocks with high OO fees and/or
arbitrage opportunities can already enable such attacks.

More generally and alarmingly, time-bandit attacks can be
subsidized by a malicious miner’s ability to rewrite profitable
trades retroactively, stealing profits from arbitrageurs and
users while still claiming gas fees on failed transactions that
attempt execution. The resulting MEV is potentially massive,
suggesting a possibly serious threat in Ethereum today.

Of course, a full analysis of the threat would require an
understanding of how time-bandit attackers might compete
against one another to harvest MEV—by analogy with PGAs.
This is a topic for future research.

VIII. OPEN QUESTIONS AND FUTURE WORK

Our results raise many important questions, some about
the arbitrage community itself. For example, it would benefit
arbitrageurs to collude with miners, but we observe no such
collusion: Preliminary experiments show that bot transactions
are equally distributed across mining pools. Are there incen-
tives to avoid collusion, such as concern about the exogenous
impact of miner malfeasance coming to light?

Other questions arise from PGA modeling. Are PGAs
positive- or negative-sum games? In what ways could our
proposed model be helpfully enriched?

More broadly, it is important to observe that DEXes are
just the tip of the iceberg. At the time of writing, IDEX, the
largest, is ranked #119 by volume by coinmarketcap.com. It
has about 1M USD in 24h volume, compared with 970M USD
for Binance, the leading centralized exchange. DEX volume
is roughly 0.01% that on centralized exchanges.

Malfeasance in centralized exchanges might well be
rampant—possibly even more egregiously so than in
DEXes [5]. As activity in such exchanges takes place off-
chain, it is private, and cannot easily be ascertained without
privileged access. Additionally, while centralized exchange
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malfeasance might seem not to impact on-chain security,
the two are inextricably linked. By altering token trading
dynamics on-chain, an adversary could manipulate and profit
from centralized exchange dynamics. For example, a time-
bandit attack could accumulate cheap tokens for offloading in
a centralized exchange.

These observations raise several key follow-up questions:
• What forms do arbitrage take in centralized exchanges

and at what volumes? And frontrunning?
• Barring direct data access, what techniques can be used

to accurately measure various forms of trading activity in
centralized exchanges?

• What financial incentives do centralized exchanges create
for malfeasances in DEXes? How might they impact
blockchain stability?

• What other insights might our data yield on DEX ar-
bitrage, especially in quantifying opportunities that are
not pure revenue? How much larger is the full arbitrage
economy than executed? Can tight bounds be developed
for the amount of MEV on Ethereum today?

IX. CONCLUSION

We have reported on a sizable economy of bots profiting
from opportunities provided by transaction ordering in DEXes.
We quantify the breadth of a specific subset of arbitrage,
pure revenue opportunities, providing lower bounds on the
profitability of ordering manipulation.

We have also formally modeled the behavior of bots com-
peting against each other for miner-supplied transaction prior-
ity in priority gas auctions. Our empirical study validates sev-
eral key predictions of our model, including the convergence
of bots on a form of profitable cooperation involving minimal
gas-price increases. We also show that in many concrete cases,
bots’ revenue from pure revenue arbitrage alone far exceeds
the Ethereum block reward and transaction fees.

Finally, we argue that miner extractable value, particularly
in the form of order optimization fees, implicit fees from
modifying transaction order, threatens blockchain consensus
stability. Such fees are large enough to subsidize serious
attacks on the network. They constitute an economic vulnera-
bility that should be a current cause for concern in Ethereum.
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APPENDIX A
SMART-CONTRACT-ENABLED COMPLEX

NONDETERMINISM

Although this work often focuses on pure revenue opportu-
nities, not all opportunities are pure revenue.

While arbitrage bots’ intent is often clear by inspection
of their transactions, other times, intent may be opaque,
nondeterministic, or may depend on unpredictable aspects
of the Ethereum network state. The smart contract wrappers
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Fig. 17. Size of the pure revenue market in USD as shown in Figure 4 for
ETH, displayed with USD/ETH price overlay.

through which bots can execute transactions enable more
than simple batching of transactions. Such contracts are actu-
ally atomically-executing programs written in Turing-complete
scripting languages, and can therefore implement complex
strategies.

For example, during, before, or after executing a set of
trades, a wrapper contract can also query prices from and
conditionally trade with automated market makers. Because
the prices offered by these automated market makers cannot
be known in advance, and because batches can revert, even
based on changes in the Ethereum global state and the success
of other batches, orders placed through smart contracts can
express complex conditional preferences on trade execution.
Complex trades can also perform arbitrary computation on
the Ethereum network. Such complex order types do not have
analogs in traditional HFT, but are similar to (and more general
than) proposals such as [43].

APPENDIX B
ADDITIONAL DATA ANALYSES

A. Pure Revenue USD Market

Figure 17 shows the ETH price and size of the pure
revenue market in USD. When compared to the equivalent
graph denominated in ETH (Figure 4), some effect of price
reductions on the market size are evident. Opportunities in
ETH are relatively consistent and well distributed, as we
expect from mechanical rents extracted due to exchange design
fundamentals. Such USD graphs appear more correlated with
the price, showing decreased revenue during price slumps and
contradicting our other data about the sophistication of the
PGA bot market increasing over time.

Because of this and the relevance of ETH to direct protocol
security analyses, we denominate the majority of our synthe-
sized results in ETH.

B. Pure Revenue, Broken Down by Bots

Figure 18 shows the size of the full pure revenue opportunity
market captured by the top 10 transaction senders; note that
the graph is very similar to the graph of the estimated profits
we calculate, having a relatively constant offset and almost
identical shape for all market players.

This may reflect imperfections in our heuristics for calculat-
ing profit; we cannot include, for example, server costs, and it
is difficult to tell which on-chain transactions other than a pure
revenue transaction may have contributed to a bot’s specific
costs. We also do not include costs of failing to capture com-
petitive pure revenue opportunities, which may be significant;
it is difficult to disambiguate these failed transactions from
unrelated transactions, as they may never execute or attempt
to execute the intended trades. These matters are left to future
work and analyses of the data we publish.

APPENDIX C
PGAS AND THEIR PARTICIPANTS’ GAMES

To provide some informal intuition for the modeling we
explore in V we now describe the perspective of both bots and
miners participating in PGAs. This also provides the basis for
our later claims that PGAs have the ability to lead to systemic
instability in blockchains, degrading their security, a notion
we explore fully in Section VII.

A. The miner perspective

From the point of view of the miner who is eventually going
to mine a block, the economic game proceeds as follows.
At some point in time (along the approximate objective time
axis displayed in Figure 2), the miner takes a snapshot of
all transactions it has seen on the peer to peer network, and
includes the highest fee transactions in a block template that
it attempts to solve the proof of work on, converting the block
template into a block able to be propagated to the network.

When this snapshot is taken, the highest n transactions
generated by PGA bots are included in the block. n is the
number of unique (account, nonce) pairs observed in the epoch
and therefore the number of unique eligible bidders: recall
each (account, nonce) can only be mined once. The highest
paying transaction is included first, and captures the associated
revenue of the opportunity. The remaining transactions are
included in descending order of gas price, or marginal cost
per instruction.

If all “bids” are competing for the same pure revenue oppor-
tunity, transactions after the first receive no revenue. If such
bids are complex probabilistic orders which are not inherently
mutually exclusive, we may expect to see decreasing power-
law profits, the lions share of which go to the first arbitrageur.

Note that in Figure 2, the mined block template was likely
formed immediately after the winning transaction and before
the next transaction with the same (account, nonce) pair;
otherwise, the higher fee transaction would have been included
by the miner to maximize revenue. This means that the block
template that would finally win this game was created by the
miner around second 5. Note also that arbitrageurs continue
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Fig. 18. Pure revenue bot breakdown, as described in Section IV, showing revenue without subtracting transaction costs.

to bid after this result is locked in, unaware that this pool
has formed the template that will eventually constitute a valid
block, showing their imperfect information with regards to this
game. After some delay, the bots learn of the outcome, and
stop bidding in the auction.

This picture overview clearly that it is in the miner’s
best interest to refresh the block templates it is mining on
as quickly as possible. Let us assume the real block was
mined after the end of the auction, around second 15. This
assumption is reasonable, as there is no incentive for the
bots we observe to continue bidding after they are made
aware a block is discovered, and there is also substantial
incentive for miners to optimize propagation latency to the
network (see e.g. [20]. Had the miners instead included
the transactions that bid highest in this action, their total
capture profit would be 231520 · 8856.24 Gwei = x ETH for
bot 0xb8D76f4BC2518F8eb508bf0Ccca76f8F9DD57a3f,
and 227534 · 7716.48 Gwei = y ETH for bot
0x6BEcAb24Ed88Ec13D0A18f20e7dC5E4d5b146542,
for a total of z ETH gained by an optimal miner. Assuming
the third bot would have bid similarly to these two bots
and would have contributed equally to the miner’s reward,
MiningPoolHub’s suboptimality in this instance cost q ETH.

It is obvious to see why substantial arbitrage opportunities
then directly alter miner strategies, by incentivizing them to
optimize on template refresh latency as described above. If
PGA opportunities increase, we expect to see such optimiza-
tions in practice.

B. The PGA bot perspective

From the perspective of the bots competing for block space
in PGAs, the game looks very different. Bots, like miners, see
transactions on the public peer to peer network performed by
their peers. They are able to simulate the execution of these
transactions, read the orderbooks of decentralized exchanges,
and issue orders. Bots should optimize on latency to other bots
to gain information more quickly about their actions. Bots

should also optimize on latency to miners, to make it more
likely that at the time when the miners form the template, their
bid was the last bid received by the miner and therefore reflects
the most market information. We explore the full space of
bot strategies in Section V. Our model shows that optimizing
for latency is profitable for a bot participating in this market,
and draws the connection to high frequency (latency-sensitive)
trading in traditional markets.

APPENDIX D
ADDITIONAL PGA MODELING DETAILS

Proof of Observation 1. S1 counterbids after time δ. Since D
has distribution Exp(λ), the probability that any bid by S0 will
have priority in a mined block is Pr[X < δ], for X a random
variable with distribution Exp(λ). This holds with probability
1− e−λδ . Thus, the payoff of S1 is positive if:

e−λδ$r − (1− e−λδ)$c > 0.

The observation follows.

Proof of Observation 2. Since ∆i > δ, S0 can schedule its
bids at intervals less than ∆i. Thus, by the time P1 observes
a bid $bi, P0 has already cast a new bid $bi+1. Since S1 is
pure, P1 can choose a value $bi+1 that outbids S′0s reactive
bid to $bi. Thus P1’s bids will always maintain the highest
bid and win the PGA.

Observation 4. There exists a finite number of intervals imax
for a cooperative PGA after which bidding is no longer
profitable, even if the block has not yet been mined.

Proof. Let imax be the greatest value for which the following
inequality holds:

s× (1 + ι)imax ≤ 1 + c,

where where s is the starting bid and n is the minimum bid
increment as defined in Section V.
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Exec(S0,∆0, S1,∆1, [D, `()])

1 : b∗,p, d0, d1 ← ∅; t∗, t∗0, t∗1 ← 0

2 : tend ←$D

3 : do

4 : if FirstBidTime(p) ≤ min(t∗0, t
∗
1,FirstTime(d0),FirstTime(d1)) then

5 : t∗ ← FirstBidTime(p)

6 : b = (t̂, $b; i)← PopFirstBid(p)

7 : b∗ ← b∗ ∪ b
8 : d1−i ← d1−i ∪ (t̂+ ∆1−i)

9 : if for i ∈ {0, 1},FirstTime(di) < FirstBidTime(p) and FirstTime(di) ≤ min(t∗0, t
∗
1,FirstTime(d1−i)) then

10 : t∗ ← PopFirstTime(di)

11 : (a, σ′i, tw,i)←$Si(b
∗[t∗ −∆i], σi, t

∗)

12 : σi ← σ′i; t
∗
i ← tw,i

13 : if a 6= ⊥ then

14 : p← p ∪ a
15 : if for i ∈ {0, 1}, t∗i < min(FirstBidTime(p),FirstTime(d0),FirstTime(d1)) and t∗i ≤ t∗1−i then

16 : t∗ ← t∗i

17 : (a, σ′i, tw,i)←$Si(b
∗[t∗ −∆i], σi, t

∗)

18 : σi ← σ′i; t
∗
i ← tw,i

19 : p← p ∪ a
20 : until FirstBidTime(p) > tend

21 : b← b∗

22 : awin = (twin, $bwin; i)← MaxBid(b)

23 : alose = (tlose, $blose; 1− i)← MaxBid(b1−i)

24 : if i = 0

25 : output ($r0, $r1) = ($1− $bwin, `($blose))

26 : else

27 : output ($r0, $r1) = (`($blose), $1− $bwin)

Fig. 19. Pseudocode for Exec, the execution of a PGA. This procedure maintains a list of pending bids p awaiting transmission. Bids in the pending
list, p, are added to the current bid list, b∗, at their scheduled time, but each player will not see them until after their individual latency, ∆i. For each bid
that is cast by player Pi, a time is added to d1−i that indicates when P1−i will first see the bid. Players are awoken to schedule bids at their specified
wake time, or earlier if they see a bid cast by the other player. For clarity, we define several functions. FirstBidTime(p) is the time t associated with the
earliest pending transaction. PopFirstBid(p) pops and outputs the earliest transaction; given two transactions with the same time, it picks one uniformly at
random. MaxBid(b) outputs the maximum price bid in b; given multiple bids at the same price, it outputs the first in temporal order. FirstTime(di) outputs
the earliest time from a list of times; PopFirstBid(di) pops and outputs the earliest time. Although not specified here, bids must meet the validity rules –
i.e. must meet the minimum start bid s, minimum raise ι and must be staggered by a minimum time δ.

We can equivalently define a latest end time for the PGA
tend = V [imax].

where V [i] < t′ < V [i+ 1].

Observation 5. Denote by ptime(t) the probability that a PGA
has ended by some time t. For proof-of-work blockchains,
ptime(t) = 1− e−λt.
Proof. Since the block interval in a proof-of-work blockchain
is exponentially distributed, we model the PGA end time as an
exponential distribution with rate parameter λ. The probability
that the auction has ended by some positive time t is given by
the CDF of the exponential distribution:1− e−λt.

Observation 6. Assume that miners continuously update their
blocks with the most profitable set of transactions. For players

P0,P1 adhering to the cooperative strategy with parameters
D,W , the probability that Pb will win the PGA is given by

imax∑
i=2k+b

(1− ptime(V [i]))× ptime(V [i+ 1]),

for k ∈ [0, iend

2 ].

Proof. Notice that probability that a player wins a PGA is
exactly the probability that the PGA terminates during an
interval controlled by that player. This follows since miners
continuously update their blocks with new more profitable
transactions and the player in control of the interval will have
the highest bid during its interval.

We can define the probability that the game ends during a
given interval as

21



pinterval(i) = (1− ptime(V [i]))× ptime(V [i+ 1]),

and the probability of Pb winning is the summation of
pinterval for all intervals that it controls.

For any interval i < imax, we can now define the expected
payoff for each player during that interval, conditioned on the
fact that the auction has already reached the interval j ≤ i and
has not yet terminated. For each interval, we give two expected
values: one for the “bidder” — i.e., the player whose turn it is
to bid during that interval and one for the “non-bidder”. The
bidder’s expected reward is given by:

Ebidder(i, j) = pinterval(i− j)× (1−W [i]).

The non-bidder’s expected reward during a given interval is
given by:

Enon−bidder(i, j) = pinterval(i− j)×−c.

Now, we define the expected payoff for each player by
continuing to follow the cooperative strategy at any point in the
game. As in our definition of the strategy, we assume without
loss of generality that P0 bids first and P1 bids second.

Observation 7. During the jth interval, the expected payoff
for Pb to continue to cooperate for the rest of the auction is
given by:

E
(Pb)
cooperate(j) =

∑
i=0,∞

Ebidder(2i+ j + b, j)+∑
i=0,∞

Enon−bidder(2i+ j + (1− b), j)+

(1− ptime(V [iend]))×−c

Proof. This follow directly form the previous observation.
Previously, we defined the expected value of a bidder and a
non-bidder in any interval. If we take an infinite sum of these
expected values, alternating between bidder and non-bidder
corresponding to the intervals in which the respective players
bid, then we will get the expected payoff for the remainder of
the game.

Next, we show the cost of deviation. For the grim-trigger
cooperative strategy, each player knows that if they defect, the
other player will raise the bid to make the game unprofitable
– i.e., each player’s payoff will be `($blose.

While intuitively this arrangement (assuming that the other
player will make good on its threat) makes deviation unwise,
deviation may still be profitable if the auction ends before the
other player can respond. This can happen due to the other
player’s latency – i.e., if there is some time delay in which
the deviation goes undetected. Additionally, this can occur due
to the rate limit – i.e., the deviation was detected, but the
other player is not yet able to place a bid to make good on its
threat. For the sake of this analysis, the latency and rate limit

serve identical functions – namely, to delay the other players
response. Thus for simplicity, we define

delay(Pb) = Max[∆1−b, δ].

Observation 8. If for all i, it holds that delay(Pb) < W [i+
1]−W [i], then under the assumption that `($blose) = −c, the
expected payoff for P1−b deviating during the ith interval is
given by

E
(Pb)
deviate(delay(Pb), i) = ptime(delay(Pb))× Max(−c, 1−W [i+ 1])

+ (1− ptime(delay(Pb))×−c
.

Proof. Since delay(Pb) < W [i+1]−W [i], then Pb will notice
and be able to react to P1−b’s deviation during the current
(before it issues any other bids). At this point, Pb will react by
bidding 1 + c, making the PGA unprofitable for both players.

Thus, P1−b’s expected profit is the expected reward that it
makes during the time before the deviation is noticed, and −c
if the auction does not end during that period, which is given
by the above equation.

Lemma 1. Let Pbidder and Pnon−bidder respectively denote
the player who is and is not bidding during an interval accord-
ing to the cooperative strategy. The grim-trigger cooperative
strategy with parameters D,W will yield a Nash Equilibrium
if ∀j,

E
(Pnon−bidder)
cooperate (j) ≥ E(Pnon−bidder)

deviate (delay(Pbidder),j).

Proof. In order for a Nash equilibrium to hold for the grim-
trigger cooperative strategy, it must be the case that for all
points in time, it is more profitable to follow the cooperative
agreement than it is to defect.

Notice that deviating is most profitable at the beginning of
one’s interval since deviating later on will yield at most the
same payoff, but conditioned on the game not having ended
previously. Thus, in order for there to be an equilibrium, it
must hold that ∀j,∀b ∈ {0, 1},

E
(Pb)
cooperate(j) ≥ E(Pb)

deviate(delay(Pb),j).

Notice that assuming the other player is cooperating, deviating
is only profitable in intervals where one is the non-bidder.
This is clear as when one already has the top bid, bidding
again would decrease their own profit. Thus in order for the
an equilibrium to hold, it must be true that the non-bidder.

APPENDIX E
OO FEES AND OTHER SYSTEM DESIGNS

We now discuss high-level consequences of OO fees in the
context of different types of blockchain systems being built
in academia and industry. The complete enumeration of their
impact is left to future work.
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• Proof-of-stake systems In any proof of stake system
where forks are allowed (e.g. [17] [28] [27]), similar
incentives as for Proof of Work exist for miner to orphan
or rewrite history when profitable OO fees exist. Re-
gardless of whether sealed-bid auctions (cf. Section V-C)
are prominent, the next miner may overtake the previous
block and replay its transactions in her block in an
optimized order. Some stake-based protocols, on the other
hand, attempt to provide a notion of finality, and feature
clients which will not revert history regardless of evi-
dence presented. For systems in which the finality notion
refers to a checkpoint that is done to cement multiple
blocks that have already been created (e.g. [12]), all of
the concerns remain the same, because rapid bidding
wars affect the appeal of short-term (in particular, single
block) forks. In blockchains that seek to finalize every
block (e.g. [24, 31]), the potential of high profit OO fees
implies that the honest (super-)majority assumption of
such systems may not coincide with rational behavior.

• Permissioned blockchain systems Permissioned
blockchains are currently being explored by many
large financial institutions, often in use-cases like
exchanges. The importance of transaction order in these
decentralized exchanges poses a variety of interesting
questions for such systems. For example, it is classically
claimed that blockchains add auditability to existing
workflows, but it is impossible to audit or objectively
divine the real order in which a block producer received
transactions on an asynchronous network. Furthermore,
because OO fees exist even on permissioned chains
where on-chain assets are being exchanged, block
producers in such chains must be chosen carefully and
trusted with correct operation and ordering.

• Sharded blockchain systems Several sharded blockchain
systems have been explored in both academia (e.g. [29])
and industry (e.g. [10]). One important consequence of
sharding blockchains is the reduced security of each shard
over the security of the whole system. Generally, the
effects of this reduced security are mitigated through ran-
dom sampling from a large pool of potential validators,
so an adversary would require substantial control of the
pool to have a high chance of adversarially controlling
a shard. Unfortunately, as OO fees show, the security
needs of shards may not be homogeneuous; a shard that
operates a large decentralized exchange must pay miners
higher rewards to ensure stability than a shard without
such an exchange by the analysis in [14]. Because few
sharded based systems are running in practice, substantial
future work remains to fully enumerate potential attacks
and their mitigations in sharded systems.

• Other exchange designs In other blockchain-based ex-
change designs, it may still be possible for miners of
the underlying system to manipulate prices, either in real
time or retroactively. This sets up similar incentives as
those explored in this work. One example is for channel
based networks with public watchtowers such as [37];

miners can simply participate in exchanges, collecting
old states through public watchtowers, and can selectively
publish profitable states in a history rewriting attack that
works as above. Thus, it is not necessarily the case that
the abstraction achieved by Layer 2 exchange systems is
sufficient to prevent ordering attacks.
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